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Abstract-A linear stability theory is used to analyse the vortex instability of buoyancy-induced boundary 
layer flow in a saturated porous medium adjacent to an inclined heated surface, where the wall temperature 
is a power function of the distance from the origin. In the main flow analysis, both the streamwise and 
normal component of the buoyancy force are retained in the momentum equations. Numerical results for 
surface heat transfer, the neutral stability curve, critical Rayieigh and wave numbers are presented for the 
angles of inclination E#J from the horizontal in the range of 0 to 70”. It is found that as the angle of inclination 
from the ho~zontal increases, the heat transfer rate increases, whereas the su~ptibility of the flow to the 
vortex mode of instabi~ty decreases. The present study provides new vortex instability results for small 
angles of inclination (Q, < 30”) and more accurate results for large angles of inclination (I#J > 30”) than the 
previous study by Hsu and Cheng (A&WE J. Heat Transfer 101, 660-665 (1979)), where the normal 

component of the buoyancy force in the main Bow was neglected. 

1. INTRODUCTION 

TIIE suoYANcY-induced motion of fluid through per- 
meable material is an important mechanism of trans- 
port. Cheng and Chang [l] developed the similarity 
solutions for buoyancy-induce flow in a saturated 
porous medium adjacent to im~~eable horizontal 
surfaces. In a subsequent paper, Hsu et al. [2] analysed 
the vortex mode of instability for a horizontal natural 
convection in a porous medium. Cheng and Min- 
kowycz [3] presented a similarity analysis for a vertical 
flat plate embedded in a saturated porous medium. 

For an inclined surface, the buoyancy force causing 
motion has a component in both the tangential and 
normal directions. This causes a pressure gradient 
across the boundary layer and leads to a theoretical 
analysis more complicated than that for a vertical or 
a horizontal surface. By neglecting the normal com- 
ponent of buoyancy force that induces the streamwise 
pressure gradient in the flow, Hsu and Cheng [4] 
showed that, in the main flow analysis, the boundary 
layer flow over an inclined heated plate can be 
approximated by the similarity solutions for a vertical 
plate, with the gravity component parallel to the 
inclined plate incorporated in the Rayleigh number ; 
then the vortex instability was analysed by a local 
similarity method. Therefore, the main flow and insta- 
bility results in ref. [4] are not valid for the angles of 
inclination from the vertical that are not small. This 
is because the normal component of the buoyancy 
force is responsible for the occurrence of the longi- 
tudinal vortices; and this component cannot be 
neglected when the angles of inclination from the ver- 
tical are large. 

The purpose of this paper is to re-examine the main 

flow and vortex instability of free convection bound- 
ary layer flow over an inclined, upward-facing heated 
plate in a saturated porous medium, for the angles of 
inclination from the horizontal, (b, ranging from 0 to 
close to 90”. The wall temperature is a power function 
of the distance from the origin. Both the streamwise 
and normal com~nents of the buoyancy force are 
retained in the momentum equations. This is in con- 
trast to the previous analyses by Hsu and Cheng [4] 
that are generally valid only for I#J > 45”. Thus the 
present study covers the ranges of 0 < 4 < 45” in 
which no reliable stability results are available in the 
literature. The present resulting governing equations 
for the main flow do not admit similarity solutions, 
They are solved by using a suitable variable trans- 
formation and employing an efficient finite difference 
method similar to that described in Cebeci and Brad- 
shaw IS]. The stability analysis is based on the linear 
theory. The disturbance quantities are assumed to be 
in the form of a stationary vortex roll that is periodic 
in the spanwise direction, with its amplitude function 
depending primarily on the normal coordinate and 
weakly on the streamwise coordinate. The resulting 
eigenvalue problem is solved using a variable step-size 
sixth-order Runge-Kutta integration routine incor- 
porated with the Kaplan filtering technique [6] to 
maintain the linear independence of the two eigen- 
functions. It should be noted that the corresponding 
problem for a viscous fluid was analysed by Chen and 
Tzuoo f7]. As might be expected, the qualitative result 
for a porous medium resembles that for a viscous 
fluid. However, there are some differences, notably 
those arising from the boundary conditions and the 
governing equations that differ in the two problems. 
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dimensional spanwise wave number 
similarity stream function profile 
dimensionless disturbance stream 
function amplitude 
gravitational acceleration 
dimensionless wave number, 
ax/(RaX cos Cp) ‘!’ 
dimensionless wave number, 
ax/(Ra_J “3 
Darcy permeability 
local Nusselt number 
perturbation pressure 
main flow pressure 
local Rayleigh number, 

p,sKB(T, - T&~/P 
time 
temperature 
perturbation temperature 
disturbance temperature amplitude 
x-direction disturbance velocity 
amplitude 
Darcy’s velocity in x-, y-, z-direction 
axial, normal, and spanwise 
components of velocity 
disturbances 
axial, normal, and spanwise 
coordinates. 

Greek symbols 
a effective thermal diffusivity 

coefficient of thermal expansion 
thermal boundary layer thickness 
similarity variable, y(Ra, cos qb) ‘: “/x 
dimensionless temperature, 

(T- TJ(T,- T-1 
dimensionless disturbance 
temperature amplitude 
volumetric heat capacity of the 
saturated porous medium to that of 
the fluid 
viscosity 
density 
temporal growth constant 
kinematic viscosity 
angle of inclination measured from 
the horizontal 
stream function 
disturbance stream function 
disturbance stream function 
amplitude. 

condition at the wall 
condition at the free stream. 

Superscripts 
* critical condition 

amplitude function for disturbance. 

_I 

2. ANALYSIS 

2.1. The main $OW 
Consider an inclined impermeable surface (TJ 

embedded in a porous medium (T,) as shown in Fig. 
1, where x represents the distance along the plate from 
its leading edge, and y represents the distance normal 
to the surface. The wall temperature is assumed to be 
a power function of x, i.e. T, = T, + Ax”‘, where A is 
a constant. The angle of inclination, 4, is measured 
from the horizontal. The following conventional 
assumptions simplify the analysis. 

(I) The physical properties are considered to be 
constant, except for the density term that is associated 
with the body force. 

(2) Flow is sufficiently slow that the convecting fluid 
and the porous matrix are in local thermodynamic 
equilibrium. 

(3) Darcy’s law and the Boussinesq approximation 
are employed. 

With these assumptions, the governing equations are 
given by 

K ap 
fJ= -- 

( 
- +pgcosfp 

P aY > 
(3) 

ag+vg=.(g+$) (4) 

Frc. I. Coordinate system. P = ~,(l --BP- T,)) (5) 



Vortex instability of buoyancy-induced inclined boundary layer flow 761 

where K is the permeability of the saturated porous 
medium ; /I the coefficient for thermal expansions ; and 
a represents the equivalent thermal diffusivity. The 
other symbols are defined in the nomenclature. 

The pressure terms appearing in equations (2) and 
(3) can be eliminated through cross-differentiation. 
By applying the boundary layer assumptions 
(a/ax << ajay, u << u) and introducing the stream func- 
tion I,/I which automatically satisfies equation (I), 
equations (l)-(5) become _ 

av bdm aT 
ay'- p ( 

-sin+- gcosq5 ay 

a+aT a*a7- a9 
ay ax ax ay 'ay2* 

The boundary conditions for this problem are 

ati 
aty=O z=O; T,=T,+AX” 

aJ,+O; T--T asy-+a 5 cc 

atx=O ft=O. T-T 
ay ’ --a’ 

(6) 

(7) 

(8) 

The following dimensionless variables are intro- 
duced : 

g(x) = (f&q cos ~$8) ‘I3 tan (p 

?(X, y) = ymx cos cp) “3/x (9) 

f G tt) = 
‘KG Y) 

cr(Ra, cm #) v3 

where 

Ra, = PmgKB(TW - T&/P 

is the modified local Rayleigh number. Then, equa- 
tions (6) and (7) become 

with boundary conditions 

f(5,O) = 0, 8(&O) = 1, f'(T, co> = 0, 
6(&m) = 0. (12) 

In the foregoing equations, the primes denote partial 
differentiation with respect to q. Equations (lo)-(12) 
are valid for all angles except b, = 11/2 because 5 --+ co 
as d, -+ 7~12. They reduce to those equations for flow 
over a horizontal flat plate [l] when 4 = 0. 

In terms of new variables, it can be shown that the 

velocity components and local Nusselt number are 
given by 

U(X,Y) = 
[ 

@wQx “,“” W’ 
1 

y(r, ?) 

U(X,Y) = - 
cl(Ra, cos 4) v3 

3x 

x (~+1)~+(~-2)~+(~+1)~~ 
i 1 (13) 

iVux(RuxcosCp)-“’ = -4(&O). 

2.2. The disturbunce$ow 
The standard method of linear stability theory in 

which the instantaneous values of the velocity, pres- 
sure and temperature are perturbed by small ampli- 
tude disturbances and the mean flow quantities are 
subtracted, with terms higher than first order in dis- 
turbance quantities being neglected result in the dis- 
turbance equations. Then, we get 

cK+E+E&) 
ay (14) 

0' = 1 (161 
~a~1 w'=--- 
P ax (17) 

where the barred and primed quantities signify the 
mean flow and disturbance components, and 1 is the 
volumetric heat capacity of the saturated porous 
medium to that of the fluid. 

Following the method of order-of-magnitude 
analysis prescribed in detail by Hsu and Cheng [4], 
the terms &‘/ax, a2T,@x2 in equations (14) and (18) 
can be neglected. The omission of &‘/ax in equation 
(14) implies the existence of a disturbance stream 
function $’ such that 

ati’ a*’ -- W+&’ VI= aZ. 

E~nating P’ from equations (15)-(17), and with 
the aid of equations (19X leads to 

ad a*q PulgvaT -- -= 
a2 axay p - xsin4 (20) 

a+y a2$ p,gKBaT 
ayz+p=- ~ -pos# (21) 
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aT’ aT’ a?= aT’ a$‘aii’ 
A--- +ii- fu’- -tkr - aZ 5; at ax ax .f ,s 

and (29) into equation (30) yields 

(JJ_k2)2F- mf’+m@+ +;; 

/ m;i:.;(D _k)F+()P:lf, m+l<af)D 
2 2 

3 8 As in Hsu and Cheng [4], we assume that the three- 
dimensional disturbances are of the form 

(ti’, u’, T’) = [II/( -x >Y), tG,P)> %Y)l 

x exp (iaz+ot+y(X)) (23) 

where Q is the spanwise periodic wave number, G is 
the temporal growth factor while 

y(x) = 
s 

cr,(x)dx 

with a,(x) denoting the spatial growth factor. Sub- 
stituting equation (23) into equations (20)-(22) and 
setting G_T = ui = 0 for neutral stability yields 

Equations (24)-(26) are solved based on the local 
similarity approximations 141, wherein the dis- 
turbances are assumed to have weak dependence in 
the streamwise direction (i.e. a/ax << a/+). 

We let 

O(q) = F/Ax" (27) 

k = ~~/(RQ~cos#)"~. 

One gets the following system of equations for the 
local similarity approximations : 

cr(&~,cos~)~‘~ m-2 

( 

2m-1 
u"= 

a 3x2 qI;"+ 3x2 F 

+ tM@b sin 4 Ax”@ 

P 

F”-k*F= -k(Raxcos~)'~30 

@"-k*@=(mf')@- 
i 
m:l/i 

(28) 

(29) 

m+l ae m-2 
+ m@+ ----+z+---p@ 

> 

+[k(Ra,co~#)'~~6']F. (30) 

Then, the substitution of G and 0 from equations (28) 

+k2(Ra,cosq5)2'30'F= 0 

with the boundary conditions 

(31) 

F(0) = D'F(0) = F(w) = D*F(co)= 0 (32) 

where D” stands for dn/dq. Equation (31) along with 
its boundary condition, equation (32) constitutes a 
fourth-order system of linear ordinary differential 
equations for the disturbance amplitude ~stributions 
F(q). For fixed m and r$, the solution F is an eigen- 
function for the eigenvalues Ra, and k. 

3. NUMERICAL METHOD OF SOLUTION 

Equations (IO)-{ 12) for the base flow were solved 
by an implicit finite difference scheme similar to, but 
modified from that described in ref. [5]. Its details are 
omitted here. In the stability calculations, the dis- 
turbance equations are solved by separately inte- 
grating two linearly independent integrals, The full 
equations may be written as the sum of two linearly 
independent solutions F(q) = F, + BF,. The two inde- 
pendent integrals F, and F2 may be chosen so that 
their as~ptotic solutions are 

where 

Fl = e-k’!, F2 = eeAq (33) 

Equation (3 1) with boundary conditions, equation 
(32) are then solved as follows. For specified m, # 
and Ra,, k is guessed. Using equations (33) as starting 
values, the two integrals are integrated separately 
from the outer edge of the boundary layer to the 
wall using a sixth-order Runge-Kutta variable size 
integrating routine incorporated with the Kaplan fil- 
tering technique [6] to maintain the linear inde- 
pendence of the eigenfunctions. The required input of 
the base flow to the disturbance equations is calcu- 
lated, as necessary, by linear inte~olation of the 
stored base flow. From the values of the integrals at 
the wall, B is determined using the boundary con- 
ditions F(0) = 0. The second boundary condition 
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D’F(O) = 0 is satisfied only for the appropriate value 

of the eigenvalue k. A Taylor series expansion of the 
initial guess of k provides a correction scheme for the 

initial guess of k. Iterations continue until the second 
boundary condition is sufficiently close to zero 
( < lo- 6, typically). 

4. RESULTS AND DISCUSSIONS 

Figure 2 shows the effects of the inclination par- 
ameter 5 = (Ra,cos 4) ‘j3 tan 4 on the dimensionless 
tangential velocity profilef’ across the boundary layer 
for m = 0. It is seen that, as would be expected, the 
dimensionless tangential velocity increases with 
increasing value of 5 ; that is, the tangential velocity 
increases with increasing value of Ru, for a given angle 
4 or increases with increasing inclination angle 4 for 
a given Rayleigh number Ra,. The dashed lines rep- 
resent the similarity solutions for an equivalent ver- 

tical plate [4], where the normal component of the 
buoyancy force is neglected in the main flow. It is 
noted that the equivalent vertical plate solutions have 
been transformed to present (5,~) coordinates for 
easy comparison with our non-similar solutions. Note 
that large calculated differences from the equivalent 
vertical plate results are apparent for 5 < 3. That is, 
the discrepancy is getting larger for small angles of 
inclination. 

Figure 3 shows the effects of the inclination par- 

ameter 5 on the dimensionless temperature profiles 
across the boundary layer for m = 0. As can be seen 

from this figure, as 5 increases, the temperature 

boundary layer thickness decreases. Numerical solu- 
tions of the local Nusselt number for selected values of 
m are shown in Fig. 4 for various values of inclination 
parameter <. As expected, the local Nusselt number 
increases as 5 increases. It is also revealed that the 
equivalent vertical results underestimate the heat 

transfer rate. 
From Figs. 2-4, the equivalent vertical solutions 

show considerably good agreement with our present 
results for 5 > 7 ; however as 5 decreases to zero, the 
equivalent vertical solutions are seen to deviate further 

from the present results. This is because as 5 decreases, 
the normal component of gravity is more pronounced. 
Thus the equivalent vertical plate results for small 
values of 5 are not accurate. The solutions of Cheng 
and Chang [l] for a horizontal plate (i.e. 5 = 4 = 0) 
are also included in Figs. 24. It is shown that our 
present results are in excellent agreement with ref. [l]. 

Figure 5 shows the neutral stability curves for selec- 

ted values of 4 (0, 5, 20, 30, 50 and 70”) at m = 0. It 
is seen that as the inclination angle 4 increases, the 
neutral stability curves shift to higher Rayleigh num- 
ber and higher wave number, indicating a stabilization 
of the flow to the vortex instability. The dashed lines 
denote the stability analysis from Hsu and Cheng [4], 
where the normal component of the buoyancy force 
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Present results 

10.0 
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f I 

6.0 

In=0 
---- Equivalent vertical 

plate results 141 

0 Cheng and Chang 111 

10 

FIG. 2. The variations of the tangential velocity component across the boundary layer for various r. Dashed 
curves represent the equivalent vertical plate results [4]. 
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FIG. 3. The temperature protiles across the boundary layer for various 5. Dashed curves represent the 
equivalent vertical plate results [4]. 
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FIG. 4. The local Nusselt number vs ( for selected values of m. Dashed curves represent the equivalent 
vertical plate results [4]. 
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FIG. 5. Neutral stability curves for selected values of inclination angles 4. 
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FIG. 6. Critical Rayleigh number vs 4 for selected values of m. 
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FIG. 7. Dimensionless critical wave number vs 4 for selected values of m. 

was not included in the main flow. It is shown that as 
4 decreases the two sets of results deviate more. On 
the other hand, as 4 > 30”, these two sets of solutions 
differ very little whether the normal component of the 
buoyancy force is included in the main flow or not. 
This is due to the fact that for large 4 the normal 
component of the buoyancy force is small, so it can 
be neglected. For 4 = 0 (5 = 0), our present results 
are in good agreement with those of Hsu et al. [2]. 

The critical Rayleigh number and wave number, 
which marks the onset of longitudinal vortices, are 
plotted as a function of inclination angle 4 in Figs. 6 
and 7, respectively, form = 0, 0.5, 1 and 1.5. It is seen 
that the critical Rayleigh number is a rather strong 
function of m. The larger the value of m is, the flow 
is more stable for the vortex mode of instability. This 
is because as m increases, the streamwise driving force 
(i.e. the terms n(L@/&) and G(aF/dx) in equation 
(26)) increases. Consequently, the flow is more stable. 
It is apparent from Fig. 7 that the critical wave number 
increases as $J increases. Also appearing in these two 
figures are dashed lines representing the stability 
results obtained by Hsu and Cheng [4], where the 
normal component of the buoyancy force is neglected. 
It is seen that the equivalent vertical plate assumption 
leads to significant errors in the stability results as 4 
decreases from 30” down to the horizontal orien- 

tation. It is also shown that as m increases, the devi- 

ation in the two sets of results is seen to become larger. 

5. CONCLUSIONS 

A linear stability analysis is made to re-examine the 
buoyancy-induced flow in a porous medium adjacent 
to an inclined heated surface. The results show that 
both the critical Rayleigh number and wave number 
are increased as the plate inclination is increased from 
the horizontal. The stability analysis based on the 
equivalent vertical plate assumptions in the main flow 
is found to be inadequate as the angle of inclination 
from the horizontal is less than 30”. It is also found 
that as the index of power law m increases, the flow 
becomes less susceptible to the vortex instability, and 
the discrepancy of the heat transfer rate, critical Ray- 
leigh and wave numbers between our present results 
and the equivalent vertical plate results become larger. 
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INSTABILITE TOURBILLONNAIRE DUN ECOULEMENT INCLINE DE COUCHE 
LIMITE INDUIT PAR PESANTEUR DANS UN MILIEU POREUX SATURE 

R&mm&Une thiorie lintaire de stabilite est utilisee pour analyser l’instabiliti tourbillonnaire de 
l’ecoulement de couche limite induit par pesanteur dans un milieu poreux sature adjacent a une surface 
chaude inclinee, oti la temperature pa&ale est une fonction puissance de la distance a l’origine. Dans 
l’analyse de l’ecoulement principal, on retient dans les equations de quantitb de mouvement les composantes 
normale et longitudinale de la force de pesanteur. Les rdsultats numtriques pour le transfert thermique 
a la surface, la courbe de stabilitt neutre, les nombres de Rayleigh critiques et les nombres d’ondes, sont 
presentbs pour un domaine dangle d’inclinaison &J a partir de l’horizontale compris entre 0 et 70”. On 
trouve que lorsque Tangle d’inclinaison augmente, le flux thermique croit tandis que la susceptibilitt de 
l’ecoulement au mode tourbillonnaire d’instabilitt diminue. La presente etude fournit des risultats nou- 
veaux pour les petits angles (4 < 30”) et des r&hats pour des grands angles (4 > 30”) plus p&is que 
dans l’etude de Hsu et Cheng (ASME J. Heat Transfer 101, 660-665 (1979)) qui ntglige la composante 

normale de la force de pesanteur dans l’ecoulement principal. 

WIRBELINSTABILITAT IN EINER AUFTRIEBSINDUZIERTEN GENEIGTEN 
GRENZSCHICHTSTRGMUNG IN EINEM GESATTIGTEN PORt)SEN MEDIUM 

Zusammenfamung-Es wird eine lineare Stabilitltstheorie verwendet, urn die Wirbelinstabilitit in einer 
auftriebsinduzierten Grenzschichtstrijmung an einer geneigten, beheizten Oberflkhe in einem gesattigten 
poriisen Medium zu bestimmen. Die Wandtemperatur ist eine Potenzfunktion der Entfemung vom Zu- 
strompunkt. Zur Bestimmung der Hauptstrijmung sind die Komponenten der Auftriebskraft in Strii- 
mungsrichtung und senkrecht dazu in der Impulsgleichung enthalten. Die numerischen Berechnungen 
des WBrmetibergangskoethzienten, der neutralen Stabilitltskurve und der kritischen Rayleigh- und der 
Wellenzahl sind in Abhgngigkeit vom Neigungswinkel 4 zur Horizontalen im Bereich von 0” bis 70 
dargestellt. Es zeigte sich, da13 fiir steigende Neigungswinkel der Wlrmeilbergang zunimmt, wohingegen 
die Anfalligkeit der Strijmung gegen Wirbelinstabilitat sinkt. Die Untersuchung liefert fur kleine Nei- 
gungswinkel (4 < 30”) neue Ergebnisse fur die Wirbelinstabilitiit. Fur groDe Neigungswinkel (4 > 30”) 
werden genauere Ergebnisse erreicht als bei Hsu und Cheng (ASME J. Heat Transfer 101,660-665 (1979)), 
die den Einflug der Normalenkomponente der Auftriebskraft auf die Hauptstrijmung vemachllssigt haben. 

BWXPEBAJI HEYCTOHHHBOCTb BbI3bIBAEMOI’0 HOfl-bEMHOH CHJIOH 
HAKJIOHHOI’O TEHEHHI B HOI-PAHHHHOM CJIOE B HACbIIJIEHHOH )KHAKOCTbIO 

I-IOPHCTOH CPEAE 

AnmoTaws--Ha OCIiOBe JIHHeiiHOii TeOpHH yCTOit%BOCTH aIiuH3HpyeTCK BHXpeBaK HeyCTOikHBOCTb 

BbJ3bfBaeMOrO noA%ehnioil CHJIOl Teqefnin B norpaHH¶HoM cnoe B HacbuAeHHoi NiAKoCrbHJ nopllCToa 

cpeAe,npRneralorrre# K H~K~OHHO~ Harpesaehfoii noeepluIocrH,rAe TeMneparypa cre=H Ka~~~ltxcKc~e- 

neHHOfi &HKIiHeti paCCTOKH&iK OT HaWJlbHOi TO'iKH. &In aHaJI&f38 Te'feHHR BHe nO~aHWtHOr0 CJlOR B 

~aBHeHEHICOJWieCTBa LIBHXZHHK y¶TeHa KLIK JKOMIIOHeHTaIlOA?kWHOfiCHJlbI,AeikTB~~eti BHiUIpaB- 

AeHHsi noToKa, TaK K KordnoHeHTa, HanpaeneHxraa no ~ophfa.mi Y noTony. llpaeenewr wcneHHbIe 

p3yJIbTaTbl n0 TeILIIoo6MeHy IlOBepXHOCTH, KpHBaX HekTpUIbHOfi yCTOfi¶HBOCTH, KpHTHWCK~ ‘IHCJIO 

k3lIeK H BOJIHOBOe ¶ECAO AJIK yTJIOB HaKJIOHa IIOBepXHOCTA ffl K rOpA30HTaJlH OT OAO 70”. ~OKiuKHO, 
'iTO n0 Mepe y~JlE¶eHHK yWIa HaKJIOHa EHTeHCHBH‘kTb TenAoo6MeHa BOspaCTaeT, B TO BplSfIl KKK 
wnfnxxne pexwda swpesoti Heycroihimxni Ha Teqexnie yhteHbmaeTcn. lIonFew rionbxe amme no 

naxpesoH Heycroifwsona npH ~e6onsuuix yrnax riaxnoua (4 < 30”) A ygrerrbt pe3ynbrarnr, no-en- 
trbIe panee Xcy B HemoM npa yrnax rtaxnona 4 > 30” (Tennonepedaua TOM 101, np. 660-665 (1979)) B 

npeHe6pexceEnm H~~MBJI~HO~~ KOMIIOHC2iTO~ n0~5t34H0P CHJIbl OCHOBHOrO nOToK8. 


